A Precise Drunk Driving Detection Using Weighted Kernel Based on Electrocardiogram
نویسندگان
چکیده
Globally, 1.2 million people die and 50 million people are injured annually due to traffic accidents. These traffic accidents cost $500 billion dollars. Drunk drivers are found in 40% of the traffic crashes. Existing drunk driving detection (DDD) systems do not provide accurate detection and pre-warning concurrently. Electrocardiogram (ECG) is a proven biosignal that accurately and simultaneously reflects human's biological status. In this letter, a classifier for DDD based on ECG is investigated in an attempt to reduce traffic accidents caused by drunk drivers. At this point, it appears that there is no known research or literature found on ECG classifier for DDD. To identify drunk syndromes, the ECG signals from drunk drivers are studied and analyzed. As such, a precise ECG-based DDD (ECG-DDD) using a weighted kernel is developed. From the measurements, 10 key features of ECG signals were identified. To incorporate the important features, the feature vectors are weighted in the customization of kernel functions. Four commonly adopted kernel functions are studied. Results reveal that weighted feature vectors improve the accuracy by 11% compared to the computation using the prime kernel. Evaluation shows that ECG-DDD improved the accuracy by 8% to 18% compared to prevailing methods.
منابع مشابه
Support Vector Machine Classification of Drunk Driving Behaviour
Alcohol is the root cause of numerous traffic accidents due to its pharmacological action on the human central nervous system. This study conducted a detection process to distinguish drunk driving from normal driving under simulated driving conditions. The classification was performed by a support vector machine (SVM) classifier trained to distinguish between these two classes by integrating bo...
متن کاملPixelwise Local Binary Pattern Models of Faces Using Kernel Density Estimation
Local Binary Pattern (LBP) histograms have attained much attention in face image analysis. They have been successfully used in face detection, recognition, verification, facial expression recognition etc. The models for face description have been based on LBP histograms computed within small image blocks. In this work we propose a novel, spatially more precise model, based on kernel density est...
متن کاملStudy on the Online Control System to Prevent Drunk Driving Based on Photoelectric Detection Technology
2 Yichun Vocational Technical College, Yichun, 336000, P. R. China Abstract: A drink driving online control system based on photoelectric detection technology is introduced in the paper. The system can take the initiative to force motor vehicle drivers to test their drinking status, and reasonably control the driver’s behavior accordingly. The basic principle is to use the characteristic that 1...
متن کاملMODELING OF FLOW NUMBER OF ASPHALT MIXTURES USING A MULTI–KERNEL BASED SUPPORT VECTOR MACHINE APPROACH
Flow number of asphalt–aggregate mixtures as an explanatory factor has been proposed in order to assess the rutting potential of asphalt mixtures. This study proposes a multiple–kernel based support vector machine (MK–SVM) approach for modeling of flow number of asphalt mixtures. The MK–SVM approach consists of weighted least squares–support vector machine (WLS–SVM) integrating two kernel funct...
متن کاملSubstance-related traffic-risk behaviors among college students.
AIMS Drunk driving is a major public health concern, but drugged driving has received little attention. This study examines drugged driving and riding with a drugged driver in a college student sample, in terms of prevalence, age-related trends, race/sex differences, overlap with drunk driving, and risk for alcohol and marijuana dependence. METHODS Students (N=1194) ages 19-22 were interviewe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Sensors
دوره 16 5 شماره
صفحات -
تاریخ انتشار 2016